
Atmos. Meas. Tech., 9, 5699–5706, 2016
www.atmos-meas-tech.net/9/5699/2016/
doi:10.5194/amt-9-5699-2016
© Author(s) 2016. CC Attribution 3.0 License.

Performance of post-processing algorithms for rainfall intensity
using measurements from tipping-bucket rain gauges
Mattia Stagnaro1,2, Matteo Colli1,2, Luca Giovanni Lanza1,2, and Pak Wai Chan3

1University of Genoa, Department of Civil, Chemical and Environmental Engineering,
Via Montallegro 1, 16145 Genoa, Italy
2WMO/CIMO Lead Centre “Benedetto Castelli” on Precipitation Intensity, Genoa, Italy
3Hong Kong Observatory, 134A Nathan Road, Hong Kong, China

Correspondence to: Mattia Stagnaro (mattia.stagnaro@unige.it)

Received: 29 July 2016 – Published in Atmos. Meas. Tech. Discuss.: 2 August 2016
Revised: 15 November 2016 – Accepted: 15 November 2016 – Published: 29 November 2016

Abstract. Eight rainfall events recorded from May to
September 2013 at Hong Kong International Airport (HKIA)
have been selected to investigate the performance of post-
processing algorithms used to calculate the rainfall inten-
sity (RI) from tipping-bucket rain gauges (TBRGs). We as-
sumed a drop-counter catching-type gauge as a working ref-
erence and compared rainfall intensity measurements with
two calibrated TBRGs operated at a time resolution of 1 min.
The two TBRGs differ in their internal mechanics, one be-
ing a traditional single-layer dual-bucket assembly, while the
other has two layers of buckets. The drop-counter gauge op-
erates at a time resolution of 10 s, while the time of tipping is
recorded for the two TBRGs. The post-processing algorithms
employed for the two TBRGs are based on the assumption
that the tip volume is uniformly distributed over the inter-tip
period. A series of data of an ideal TBRG is reconstructed us-
ing the virtual time of tipping derived from the drop-counter
data. From the comparison between the ideal gauge and the
measurements from the two real TBRGs, the performances
of different post-processing and correction algorithms are
statistically evaluated over the set of recorded rain events.
The improvement obtained by adopting the inter-tip time al-
gorithm in the calculation of the RI is confirmed. However,
by comparing the performance of the real and ideal TBRGs,
the beneficial effect of the inter-tip algorithm is shown to be
relevant for the mid–low range (6–50 mmh−1) of rainfall in-
tensity values (where the sampling errors prevail), while its
role vanishes with increasing RI in the range where the me-
chanical errors prevail.

1 Introduction

Application-driven requirements of rainfall data (see e.g.
Lanza and Stagi, 2008), the recommendations of interna-
tional bodies such as the World Meteorological Organiza-
tion (WMO, 2008), and new measurement quality standards
issued at the national (UNI 11452:2012; BS 7843-3:2012)
and international (CEN/TR 16469:2013) levels provide an
increasingly demanding framework in terms of proven in-
strumental accuracy and reliability.

Following the effort led in the last decade by the WMO
and aiming at quantifying the achievable accuracy of rain-
fall intensity measurements (Lanza and Vuerich, 2009), both
users and manufacturers of precipitation gauges are develop-
ing strategies to reduce the uncertainty and to provide suit-
ably documented performance evaluation of rainfall mea-
surements.

Sound metrological procedures for the assessment of the
uncertainty of meteorological measurements have recently
been introduced within the framework of Europe-wide col-
laborative projects (Merlone et al., 2015) and therein ex-
tended to the measurement of liquid precipitation (see San-
tana et al., 2015). In this context, we use the term uncertainty
in accordance with the International Vocabulary of Metrol-
ogy (VIM) as the non-negative parameter characterizing the
dispersion of the quantity values being attributed to a mea-
surand (JCGM, 2012).

Besides the inherent instrumental factors (e.g. the system-
atic mechanical bias of tipping-bucket rain gauges or the dy-
namic response bias of weighing gauges), post-processing of
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the raw data to obtain accurate rain intensity records at a
pre-determined temporal resolution is common practice. In
the case of tipping-bucket rain gauges (TBRGs), dedicated
post-processing algorithms must be employed to achieve suf-
ficient accuracy and to minimize the impact of sampling er-
rors and the discrete nature of the measurement.

Various algorithms have been proposed to this aim and dis-
cussed in the literature (Costello and Williams, 1991; Habib
et al., 2001; Colli et al., 2013a, b). However, the operational
practice of most users, including national weather services,
still relies on the trivial counting of the number of tips oc-
curring in the desired period. The number of tips counted in
each 1 min time frame (the WMO recommended time resolu-
tion for rain intensity measurements) multiplied by the nom-
inal volume of the bucket provides the 1 min rain intensity
record.

This method (as already observed by Costello and
Williams, 1991) results in a general underestimation of rain
intensity figures and in a high level of uncertainty, due to
the random nature of the number of tips per minute within
any real-world, highly variable rainfall event. Moreover, the
correction of systematic mechanical biases can not be op-
timized with this method since it would be applied to the
averaged values only, and most tipping-bucket rain gauges
show a non-linear correction curve after laboratory calibra-
tion (Lanza and Stagi, 2009).

We compare and discuss in this paper the performance
of different post-processing algorithms employed in the cal-
culation of the rainfall intensity from tipping-bucket rain
gauges. Data recorded at a field test site by two TBRGs using
different mechanical designs are used, and a catching-type
drop-counting gauge is assumed as the working reference.
The comparison aims to highlight the benefits of employ-
ing smart algorithms in post-processing of the raw data and
their ability to improve the accuracy of rain intensity mea-
surements obtained from TBRGs.

2 Field site and instrumentation

The Hong Kong Observatory performs rainfall measure-
ments at the weather station of Hong Kong International Air-
port (HKIA). An Ogawa optical drop-counting rain gauge,
model Osaka PC1122 (OSK), is available at the field site,
providing rainfall measurements at the time resolution of
10 s.

Based on the calibrated drop size volume (calculated
in October 2013) of 63.93± 0.56 mm3, the OSK drop-
counter rain gauge is able to measure rainfall rates of up
to 200 mmh−1 with a resolution of 5.21± 0.04× 10−3 mm
(Chan and Yeung, 2004; Colli et al., 2013a), thereby fulfill-
ing the WMO (2008) accuracy requirements.

Due to the high accuracy and time resolution, we adopted
the OSK drop-counter gauge as a working reference, and
compared its measurements with co-located observations

Figure 1. Shanghai SL3-1 (SL3): internal mechanism with a double
layer of tipping buckets (a) and an external case (b).

performed by two TBRGs manufactured by Logotronic
MRF-C (LGO) and Shanghai SL3-1 (SL3). The main char-
acteristics of the instruments employed in this study are sum-
marized in Table 1. Note, in particular, that the two TBRGs
have the same nominal sensitivity (equal to 0.1 mm) but
employ different mechanical designs. The LGO is a tradi-
tional TBRG with a dual-compartment single-bucket assem-
bly, while the SL3 gauge has two consecutive layers of dual-
compartment buckets (see Fig. 1).

This is not a common solution for TBRGs, and the objec-
tive of the two layers of buckets employed seems to reside in
the attempt to reduce the systematic mechanical bias, typical
of traditional TBRGs. In a sense, this is a hardware type of
correction similar to the use of a syphon or other mechanical
solutions.

The three instruments are positioned in the western corner
of the field test site of the Hong Kong Observatory (depicted
in Fig. 2). The two TBRGs and the OSK drop counter are in-
stalled on the ground. The minimum distance from the main
obstacle close to the instruments is about 18 m. The posi-
tions of the SL3 (blue box), the LGO (red box) and the OSK
(green box) are illustrated in Fig. 2; the distance between the
SL3 and the OSK is about 5.8 m, while the LGO is located
about 2.1 m south of the OSK.

In order to correct the systematic mechanical errors of the
two TBRGs, both of them were subjected to appropriate dy-
namic calibration in the laboratory. The dynamic calibration
consists of providing the gauge with a sufficient number of
equivalent rainfall intensities, using calibrated constant flow
rates. By comparing the reference values with those mea-
sured by the rain gauge under test, the parameters of a suit-
able correction curve (usually a power law) are derived. The
measurements from the two TBRGs were corrected before
performing any comparison with the drop-counter time se-
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Table 1. Types of rain gauges employed for this comparison and their principal characteristics.

Rain gauge Measuring principles Resolution Max. RI∗ Funnel diameter Accuracy
(mm) (mmh−1) (mm) (%)

Ogawa OSK PC1122 Drop counter 5.21× 10−3 200 127.0 ±0.89
Logotronic (LGO) Tipping bucket 0.1 200 252.3 ±2∗∗

Shanghai (SL3) Two-layer tipping bucket 0.1 240 200.0 ±0.4∗∗

∗ Maximum measured rainfall intensity as declared by the manufacturer.
∗∗ Accuracy provided by the manufacturer.

Figure 2. The western corner of the Hong Kong Observatory field
test site where the SL3 (blue box), the LGO (red box) and the OSK
(green box) are located. The distances of each instrument from the
field site borders are also indicated.

ries and/or with the ideal TBRG data obtained from the ref-
erence.

In this work, the computation of statistical estimators and
deviations between paired observations was performed with
no reference to any ancillary data (wind speed and direction,
air temperature and absolute pressure, etc.), although it is
known that some of them (especially the wind) may actually
affect the accuracy of the measurement.

The field data available for this study cover a 5-month pe-
riod of observations from May to September 2013. Eight sig-
nificant events in this period were selected based on the total
rainfall depth, after checking that the reference rainfall in-
tensity values were lower than the given factory limits for
the instruments under test.

Table 2 reports a short description of the selected events, in
terms of total rainfall depth (htot), maximum rainfall intensity
in 1 min (Imax) and event duration (d).

Figure 3 shows a sample hyetograph of the raw data for
the rain event that occurred on 22 May 2013. The 1 min
reference rainfall intensity is depicted (shaded grey back-
ground) as calculated from the 10 s high-resolution data of
the OSK drop counter, as well as the accumulated rainfall

Table 2. Total rainfall depth (htot), maximum 1 min rainfall rate
(Imax) and duration (d) of selected events recorded by the Ogawa
drop counter during the observation period.

Date htot Imax d

(mm) (mmh−1)

22 May 2013 205 125 11h 27 min
25 May 2013 125 102 6h 56 min
24 June 2013 142 114 6h 19 min
24 July 2013 51 95 2h 54 min
25 July 2013 48 96 3h 10 min
4 September 2013 66 72 6h 44 min
5 September 2013 65 73 4h 53 min
23 September 2013 89 64 6h 9 min

Figure 3. Reference rainfall intensity measured by the OSK drop
counter (shaded grey background) and comparison of the accu-
mulated reference (red continuous line) with the accumulated Lo-
gotronic (LGO) and Shanghai (SL3) measurements during the sam-
ple event of 22 May 2013.

for the OSK (solid red line) and the SL3 and LGO gauges
(dashed and dotted line). The underestimation of the cumu-
lative rain depth by the two TBRGs is evident from Fig. 3.
The relative underestimation of the total depth, for this par-
ticular event, is equal to 13.6 and 12.5 % for the SL3 and
LGO rain gauges respectively.
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Figure 4. Box plot of the reference rainfall intensity for each event
(top of the graph) and the corresponding daily rain amount (lower
part of the graph) for the OSK drop counter (reference) and the two
TBRGs (SL3 and LGO). The explanation of the symbols used in the
boxplot representation is shown on the right-hand side of the graph.

Figure 4 reports a boxplot description of the set of events
in terms of 1 min rainfall intensity distribution from the drop-
counter reference OSK (upper part), together with the total
accumulation for the OSK and the two TBRGs (lower part).
Note that the two TBRGs show a larger underestimation of
the total rain amount for events characterized by the high-
est values of the rainfall rate, in terms of both the mean and
the extreme values, while the difference decreases for lower
rainfall intensity (RI) events.

3 Method

We adopted the catching-type drop-counter gauge as the
working reference for this work due to the high sensitivity of
the measurement. Indeed, the instrument provides the num-
ber of generated drops with a time resolution of 10 s. We
first aggregated this information to obtain the 1 min refer-
ence rainfall intensity values (RIref), for use in the overall
assessment of the accuracy of the two involved TBRGs.

Both the SL3 and LGO rain gauges provide records of the
time stamp of each tip. This feature allows one to use various
algorithms to calculate the 1 min rainfall intensity values for
the two investigated TBRGs.

The first, traditional and widely applied method to derive
the 1 min rainfall intensity (RIraw) simply relies on the count-
ing of the number of tips within each minute. The product of
this number by the nominal volume of the bucket provides
the rainfall amount in any single minute, and therefore the
average rainfall intensity at such and any higher time reso-
lution. The use of a suitable correction curve derived from
laboratory calibration allows systematic mechanical errors to
be accounted for as a function of the rainfall intensity. The
traditional method assigns the whole volume of each bucket

to the minute in which the tip occurs, even when part of the
bucket is actually filled already in the previous minute, in-
troducing significant counting errors in the calculation of the
1 min rainfall intensity RIraw. The uncertainty introduced by
the tip-counting method also affects the efficacy of the cal-
ibration, since the correction applied to the volume of the
bucket in each minute does not precisely derive from the ac-
tual rain intensity occurring in that minute.

The second method used to obtain the 1 min rainfall in-
tensity values (RITtip) employs the inter-tip time algorithm
(see e.g. Costello and Williams, 1991; Colli et al., 2013a),
which is based on the assumption that the nominal volume
of each bucket is equally distributed over the inter-tip period.
The calculation of the RITtip for each minute accounts for
the portion of the inter-tip period actually falling into that
minute. In this way, the calibration is also the most effective
since the correction applied to the volume of the bucket at
the variable inter-tip scale is precisely the one corresponding
to the measured rainfall intensity.

For both the TBRGs, the two values of the 1 min RI
derived from the two post-processing algorithms described
above (generally indicated in Eq. 1 as the measured rain in-
tensity RIm) were employed. We calculated the accuracy of
rainfall intensity measurements in terms of percentage devia-
tions (erel) from the OSK drop-counter reference value (RIref)
as follows:

erel(%)=
RIm−RIref

RIref
· 100. (1)

In addition, in order to compare the performance of post-
processing and correction algorithms for the TBRG mea-
surements, we derived a virtual sequence of tips of an ideal
tipping-bucket rain gauge (TBRi) from the high-resolution
drop-counter (OSK) data. This simulates the behaviour of the
best performing (optimal) TBRG, representing the maximum
accuracy we can expect when using the tipping-bucket me-
chanics. The inter-tip and tip-counting algorithms were em-
ployed to derive the 1 min ideal rainfall intensity values (RIi
and RIi(raw) respectively) and then the relative deviation (erel)
from the reference (OSK) as described in Eq. (1).

In order to assess the ability of the employed algorithm
to describe the inner variability of the considered events and
to capture their finer details, we calculated the correlation
coefficients between all the derived time series and the ref-
erence ones. In particular, for each event, we calculated the
RMSE error of paired deviations between the measured and
ideal/reference RI signals.

In an effort to homogenize the dataset, we considered
the standardized value of the generic rainfall intensity value
(RIn) obtained as follows:

RIn =
(RIm−µref)

σref
, (2)

where the mean value µref and the standard deviation σref
employed in Eq. (2) to obtain the standardized values of rain-
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Figure 5. One-minute relative deviations (erel) between the three
TBRGs (including the ideal one) and the reference (OSK) when
adopting the inter-tip post-processing algorithm (Ttip).

fall intensity (RIn) for all the TBRGs are those derived from
the OSK drop-counter reference rainfall rates. In this way, we
obtained comparable results in terms of the standard devia-
tion of the standardized RI time series for all the investigated
rainfall events.

4 Results

We first evaluated the accuracy of the investigated RI algo-
rithms using TBRG measurements by comparing their per-
formance with the working reference. Figure 5 shows the rel-
ative deviations (erel) from the drop-counter (OSK) reference
for the three TBRGs (including the ideal virtual gauge). The
reported box plots provide a synthesis of the results obtained
by adopting the inter-tip algorithm, and are classified accord-
ing to different ranges of RIref.

Two different regions of this graph show different be-
haviours of the relative deviations calculated with the inter-
tip approach. At low values of the RI, the relative deviations
of all the TBRGs exhibit a large variability, whereas this scat-
ter suddenly decreases just above the RI value of 6 mmh−1

(highlighted in black) and then continues to decrease with
increasing RI. This limit coincides with the sensitivity of the
TBRG buckets (both the real and virtual ones); in fact, val-
ues of RI higher than 6 mmh−1 generate at least one tip per
minute for TBRGs with a sensitivity of 0.1 mm.

It emerges from the graph in Fig. 5 that the average devia-
tion of both the LGO and SL3 gauges is always negative. In
particular, the SL3 gauge shows an average underestimation
that is larger than the LGO (except for one bin). This is co-
herent with the daily amounts shown in Fig. 4, where the cu-
mulative rain depth of the SL3 gauge is lower than or equal to
the value recorded by the LGO. Despite the fact that the SL3
rain gauge underestimates rainfall more than the LGO on av-
erage, the variability of the deviations from the reference for

Figure 6. One-minute relative deviations (erel) between the three
TBRGs (including the ideal one) and the reference (OSK) when
adopting the tip-counting algorithm (raw).

different values of RI is slightly reduced with respect to the
LGO.

The behaviour of the ideal TBRG is clearly different, since
it is not affected by instrumental mechanical errors (ideal me-
chanics), and the average value of erel becomes close to zero
immediately after the threshold value of the instrument sen-
sitivity.

Note from Fig. 5 that the ideal TBRG shows large vari-
ability and an average value of the relative deviations that is
comparable to the real TBRGs when the RI values are below
6 mmh−1. This means that the error caused by the aggre-
gation time is relevant in this region when compared to the
mechanical one.

As the rainfall rate increases, the variability of erel consid-
erably decreases, even if it does not vanish due to the sam-
pling time of the OSK (10 s), whereas the average values are
close to zero. The residual variability of erel observed for the
real TBRGs accounts for the propagation of the calibration
uncertainty and other environmental factors (e.g. the wind-
induced and wetting effects).

Figure 6 describes the relative deviation (erel) from the
drop-counter OSK reference gauge of the measured value of
RI from the three TBRGs adopting the rough tip-counting al-
gorithm. Below the instrument sensitivity limit of 6 mmh−1,
where less than one tip per minute occurs, the relative er-
rors of all TBRGs are similar and show a very high scat-
ter. Above this threshold value, the variability gradually de-
creases. Also, in this case the ideal TBRG shows an av-
erage value of deviation which is close to zero, while the
SL3 and the LGO continue to maintain a mean value of erel
negative for all the RI classes. Close to the threshold value
of 6 mmh−1, the variability of the relative error (erel) de-
creases drastically for all three gauges, and the average value
is the closest to zero. The residual variability of erel observed
for the real TBRGs when RI > 6 mmh−1 accounts for the
residual tipping-bucket mechanical error after calibration and
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Figure 7. Taylor diagram representation of pattern statistics of the
various RI series. The radial distance from the origin is proportional
to the normalized standard deviation of the RI signal; the blue con-
tour lines highlight the RMSE difference from the OSK reference
(black dot) for each recorded event; the azimuthal position indicates
the correlation coefficient between the RI signal and the reference.
Crosses indicate the statistics of each single event, while the dots in-
dicate the average values of the whole campaign (colours according
to the legend).

other environmental factors (e.g. the wind-induced and wet-
ting effects).

In Fig. 7 the Taylor diagram is reported (Taylor, 2001)
to show the effect of the inter-tip algorithm in terms of the
standard deviation of the standardized RI signal, the corre-
lation coefficient between the TBRGs and the reference and
its deviations from the reference. Considering the standard
deviation of the RI signal for the real TBRGs, note that the
two algorithms used to compute the RI values provide com-
parable results (approximately equal to 0.9). Since the ideal
TBRG directly derives from the reference, the standardized
standard deviation is the closest to unity.

In the same figure, the benefit of using the inter-tip time
algorithm instead of the tip counting is evident: the correla-
tion coefficients of the two real TBRGs increase using the
former one for both TBRGs. Therefore, the beneficial effect
in terms of deviations of the measured RI from the reference
is highlighted. In fact, note the reduction of the RMSE differ-
ence from the reference, approaching the value of the ideal
TBRG. This reduction can be quantified in about 1 mmh−1.

Also, the RI time series of the ideal TBRG shows a nor-
malized standard deviation approximately equal to 1, that is,
the same as the reference, and a mean correlation coefficient
greater than 0.99. However, the average value of the RMSE
between the synthetic TBRG and the reference continues to
show a relevant value slightly below 2 mmh−1, which does
not decrease further below 1 mmh−1 in all the considered
events.

Figure 8. Standard deviation of the relative error for the ideal and
investigated TBRGs when adopting the inter-tip time algorithm
(Ttip) and the tip-counting method (raw) with respect to the ideal
gauge for both the SL3 (a) ad LGO (b) instruments. In panel (c), the
sample size for each RI class is reported.

In order to evaluate the effectiveness of the post-
processing algorithms on the accuracy of the measurements
over different ranges of rainfall intensity, we plotted the stan-
dard deviation of the relative error (erel) for different classes
of RI. Figure 8 reports the results of this analysis.

It is evident from the graph that the raw counting of the
number of tips results, for both the investigated TBRGs, in
a continuous trend of linear (in a log–log scale) reduction of
the error variance with increasing RI. This reflects the fact
that the random attribution of one tip to the wrong minute
does not strongly affect the derived RI since the number of
tips per minute is relatively high.

At very low values of RI, there is little difference between
the results obtained by employing the simple counting of tips
or the inter-tip algorithm, with respect to the ideal TBRG. By
increasing the RI, but still below the threshold intensity cor-
responding to the sensitivity of the gauges, the effectiveness
of the inter-tip time algorithm is relevant and results are very
near to the ideal gauge. This effectiveness decreases beyond
the sensitivity value and, when the RI increases beyond 50–
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60 mmh−1, the difference with respect to the counting of tips
becomes negligible. In this range, the LGO performs slightly
better than the SL3 when the inter-tip time algorithm is used.

5 Conclusions

The raw data recorded during a dedicated monitoring cam-
paign have been analysed using two different post-processing
algorithms to calculate 1 min RI series. The results allow one
to compare the performance of the inter-tip time algorithm
with the more common tip-counting method when using two
different types of TBRGs. The field reference chosen for
this comparison is a catching-type, optical drop counter that,
although calibrated in the laboratory, is still subject to un-
known uncertainties in field operation (wind, wetting, splash-
ing, etc.). Notwithstanding this residual uncertainty, compar-
ison of the two gauges with a virtual TBRG obtained from
the reference measurements was able to show relevant differ-
ences in the calculated 1 min rainfall intensity and the rela-
tionship of such differences with the rainfall rate itself.

In particular, the main benefit of adopting the inter-tip time
method as a post-processing algorithm to calculate rainfall
intensity from the raw data resides in a better representation
of the inner variability of rainfall events. The measured RI
series shows an improved correlation coefficient and a lower
RMSE with respect to the reference, closely approaching the
performance of an ideal TBRG, which is not affected by me-
chanical biases.

In terms of accuracy, the inter-tip time algorithm con-
tributes its greater beneficial effects in the range of low to
mid RI values. In the very low RI range, below the thresh-
old value of 6 mm h−1 (corresponding to the sensitivity of
the involved instrument and a typical value for an opera-
tional TBRG), the performance of the inter-tip time method
in terms of the statistical amplitude of the deviations from
the reference of the calculated RI are comparable to an ideal
TBRG. In this range, indeed, the time lag between consecu-
tive tips exceeds the time resolution of the measurement, and
the sampling error represents the main source of uncertainty.

Beyond that threshold value, a step change is ob-
served since at least one tip per minute is recorded when
RI > 6 mmh−1. The inter-tip time algorithm is still better than
the tip-counting method in this range, up to about 50 mmh−1,
although the performance is no longer comparable to that of
the ideal gauge. Mechanical errors become prevalent here, so
that deviations from the ideal gauge result from the residual
uncertainty of the calibration process. At the highest RI val-
ues the benefits of the inter-tip time algorithm vanish due to
the large number of tips per minutes recorded in this range,
and the performances of the two post-processing algorithms
become comparable, though both of them perform worse
than the ideal TBRG.

6 Data availability

The data presented in this paper are available on request from
the corresponding author.
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